

August 12, 2005

Random spread and

Forest Fires

Jean Serra
A2SI ESIEE
University of Paris-Est,

France

Classical maps

- Usual maps symbolize objects that do exist in the physical word,
- e.g. the Malaysian peninsula is prior to any geographer, and independent of him.

Risks maps

Consider now the two maps of forest fires parameters

Relative Scale:
the lighter, the more fuel

Fire spread : ρ

Scale : 0 meter/mn (black)
to 3 meters $/ \mathrm{mn}$ (light)

Selangor State, Malaysia

A missing link

- When we draw the map of a risk, e.g. a spread fire, we describe a scientific assumption.
- There is no actual object in the physical word that the map symbolizes: it represents potentialities only.
- If we want to go from potentialities to the actual events, an additional element turns out to be necessary.
.....But how to handle it?

The missing link

Fire spread: ρ

Fuel amount : θ

- How to go from these two maps to the burnt regions?
- Can we derive from them the duration of a fire ?
- and the size distribution of the burnt regions?
- Without a model, surely not!

Scars from 2000 to 2004

The missing link

Fire spread: ρ

Fuel amount : θ

- How to go from these two maps to the burnt regions?
- Can we derive from them the duration of a fire?
- and the size distribution of the burnt regions?
- Without a model, surely not!

Scars from 2000 to 2004

A Pde?

- Classically, each Pde summarizes a conflict of elementary variations,
- but here, we are facing a space-time process whose all parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?

A Pde?

- Classically, each Pde summarizes a conflict of elementary variations,
- but here, we are facing a space-time process whose all parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?

Hot Spots

In red, the hot spots detected
in Selangor, on
August 12, 2005

The spread map based Pde

Initial hot spots

The spread map based Pde

The speed of expansion is given by the spread rate map

The spread map based Pde

The spread map based Pde

The spread map based Pde

The spread map based Pde

When the seats expand according to the spread map, then they progressively invade the whole space

A theoretical tool

- Indeed, such situations are the matter for a probabilistic modelling by random sets,

A theoretical tool

- Indeed, such situations are the matter for a probabilistic modelling by random sets,
- The random spread model allows us to complete the missing link, by mixing Poisson points and dilation.

A theoretical tool

- Indeed, such situations are the matter for a probabilistic modelling by random sets,
- The random spread model allows us to complete the missing link, by mixing Poisson points and dilation.
- It results in predictions for the
\Rightarrow daily evolution of the fire;
\Rightarrow the possible natural extinction,
\Rightarrow location of the scar regions.

A theoretical tool

- Indeed, such situations are the matter for a probabilistic modelling by random sets,
- The random spread model allows us to complete the missing link, by mixing Poisson points and dilation.
- It results in predictions for the

$$
\Rightarrow \text { daily evolution of the fire; }
$$

\Rightarrow the possible natural extinction,
\Rightarrow location of the scar regions.

- Finally, it also leads to simulations of the fire propagation.

Random Closed Sets (or RACS)

Let \mathbb{R}^{d} be the Euclidean space of dimension d , $\mathcal{F}=\mathcal{F}\left(\mathbb{R}^{d}\right)$ denotes the family of all closed sets of \mathbb{R}^{d}, $\mathcal{K}=\mathcal{K}\left(\mathbb{R}^{d}\right)$ the family of all compact sets.

- σ-algebra : Given an element $\mathrm{K} \in \mathcal{K}$, consider the class $\mathcal{F}(\mathrm{K})$ of all closed sets that miss the compact set K . As K spans the family \mathcal{K}, the classes $\{\mathcal{F}(\mathrm{K}), \mathrm{K} \in \mathcal{K}\}$ generate a σ-algebra.
- RACS : Moreover, as \mathcal{F} is a compact space, one can weight σ by probabilities P . Then each triplet ($\mathrm{F}, \sigma, \mathrm{P}$) defines a RACS.

This abstract definition of a RACS goes back to G.Matheron and D.G.Kendall. However, these authors made their approach more tractable by proving the following result.

The Matheron-Kendall theorem

- Characteristic Theorem: Every RACS X is characterized by the datum of the probabilities

$$
\mathbf{Q}(\mathbf{K})=\operatorname{Pr}\left\{\mathbf{K} \subseteq \mathbf{X}^{\mathbf{c}}\right\} \quad \mathbf{K} \in \mathcal{K} .
$$

Conversely, a family $\{\mathrm{Q}(\mathrm{K}), \mathrm{K} \subseteq \mathcal{K}\}$ defines a unique RACS if and only if $1-Q(K)$ is a Choquet capacity such that

$$
0 \leq \mathrm{Q} \leq 1 \quad \text { and } \quad \mathrm{Q}(\phi)=1 .
$$

The Matheron-Kendall theorem

- Characteristic Theorem: Every RACS X is characterized by the datum of the probabilities

$$
\mathbf{Q}(\mathbf{K})=\operatorname{Pr}\left\{\mathbf{K} \subseteq \mathbf{X}^{\mathbf{c}}\right\} \quad \mathbf{K} \in \mathcal{K} .
$$

Conversely, a family $\{\mathrm{Q}(\mathrm{K}), \mathrm{K} \subseteq \mathcal{K}\}$ defines a unique RACS if and only if $1-Q(K)$ is a Choquet capacity such that

$$
0 \leq \mathrm{Q} \leq 1 \quad \text { and } \quad \mathrm{Q}(\phi)=1 .
$$

- Choquet' capacity : numerical function Q on \mathcal{K}, such that

$$
\begin{aligned}
& \text { 1- } S_{1}\left(K ; K_{1}\right)=Q(K)-Q\left(K \cup K_{1}\right) \\
& S_{n}\left(K ; K_{1} . . K_{n}\right)=S_{n-1}\left(K ; K_{1} . . K_{n-1}\right)-S_{n}\left(K \cup K_{n} ; K_{1} . . K_{n-1}\right) \\
& \text { 2- } \quad K_{n} \downarrow K \quad \text { implies } \quad Q\left(K_{n}\right) \uparrow Q(K)
\end{aligned}
$$

Poisson points

- Here are usual simulations of Poisson points (slightly dilated by a rhomb for the display)

They are «usual» in that the intensity $\theta(x)$ is constant

Poisson points

A basic random set is that of the Poisson points, defined as follows

- 1/ If B and B ' are disjoints, then the numbers of points in B and B ' are independent variables;

Poisson points

A basic random set is that of the Poisson points, defined as follows

- $1 /$ If B and B^{\prime} are disjoints, then the numbers of points in B and B ' are independent variables;
- 2/ If $B=d x$ is a small set, then the probability of

$$
\begin{array}{lll}
1 \text { point in } \mathrm{dx} & \text { is } & \theta(\mathbf{d x}) \\
0 \text { point in } \mathrm{dx} & \text { is } & 1-\theta(\mathbf{d x})
\end{array}
$$

Poisson points

A basic random set is that of the Poisson points, defined as follows

- $1 /$ If B and B^{\prime} are disjoints, then the numbers of points in B and B ' are independent variables;
- 2/ If $B=d x$ is a small set, then the probability of

$$
\begin{array}{lll}
1 \text { point in } \mathrm{dx} & \text { is } & \theta(\mathbf{d x}) \\
0 \text { point in } \mathrm{dx} & \text { is } & 1-\theta(\mathbf{d x})
\end{array}
$$

The functional $\mathrm{Q}(\mathrm{K})$ of Poisson points θ is

$$
Q(K)=\exp \left\{-\int_{K} \theta(d x)\right\}=\exp \{-\theta(K)\}
$$

Regionalized Poisson points

In some cases the intensity of the Poisson points can also vary
through the space ...

We still have the probability

$$
\theta(x) d x
$$

of one point in dx ,
but θ is now an underlying function of the space

Regionalized Poisson points

As θ is multiplied by a constant factor,
the number of points increases

Regionalized Poisson points

And more again...

Regionalized Poisson points

And more and more ...

Regionalized Poisson points

I. Serra, Paris-Est

ISMM 07 Octobre, Rio de Janeiro 33

Boolean random set

Boolean random set

Two parameters

Just as a Boolean random set, a random spread depends on

- The the intensity θ, non negative numerical function
- The dilation δ, a set function $\mathbb{R}^{\mathrm{d}} \rightarrow \mathcal{P}\left(\mathbb{R}^{\mathrm{d}}\right)$

Two parameters

Just as a Boolean random set, a random spread depends on

- The the intensity θ, non negative numerical function
- The dilation δ, a set function $\mathbb{R}^{\mathrm{d}} \rightarrow \mathcal{P}\left(\mathbb{R}^{\mathrm{d}}\right)$

Here we take for set $\delta(\mathrm{x})$ the disc of radius ρ at point x

Point intensity θ

Dilation radius ρ

Parameters maps

The two previous maps are details of the following risk maps

Random Spread

The idea of a random spread is the following

Iterated spread

Fire $\mathbf{X}_{\mathrm{n}}=\delta\left(\mathbf{I}_{\mathrm{n}-1}\right)=\delta \circ[\beta]^{\mathrm{n}-1}\left(\mathbf{I}_{0}\right)$
Seat $\mathbf{I}_{\mathbf{n}}=\beta^{\mathrm{n}}\left(\mathbf{I}_{0}\right)=\cup\left\{\delta\left(\mathbf{x}_{\mathrm{i}}\right) \cap \mathbf{J}_{\mathrm{i}}, \mathbf{x}_{\mathrm{i}} \in \mathrm{I}_{1}\right\}$
Examples of iterated Spread

Dilation radius

Functional of the Boolean set

The Boolean Random set $\mathrm{X}(\theta, \delta)$ is characterized by the probabilities $\mathrm{Q}(\mathrm{K})$ that K misses the RACS, for all compact sets $K \subset \mathbb{R}^{d}$ (Choquet characteristic). We have that

$$
\mathbf{Q}(\mathbf{K})=\exp \left\{-\int_{\zeta(\mathbf{K})} \theta(\mathbf{d x})\right\}=\exp \{-\theta[\zeta(\mathbf{K})]\}
$$

Functional of the Boolean set

The Boolean Random set $\mathrm{X}(\theta, \delta)$ is characterized by the probabilities $\mathrm{Q}(\mathrm{K})$ that K misses the RACS, for all compact sets $K \subset \mathbb{R}^{\text {d }}$ (Choquet characteristic). We have that

$$
\mathbf{Q}(\mathbf{K})=\exp \left\{-\int_{\zeta(\mathbf{K})} \theta(\mathbf{d x})\right\}=\exp \{-\theta[\zeta(\mathbf{K})]\}
$$

where ζ is the reciprocal of δ, i.e.

$$
\mathbf{x} \cap \zeta(\mathbf{K}) \neq \varnothing \quad \Leftrightarrow \quad \delta(\mathbf{x}) \cap \mathbf{K} \neq \varnothing
$$

Functional of iterated spread

Let us calculate the functionals $\mathbf{Q}_{1} \ldots \mathbf{Q}_{\mathrm{n}}$ of spreads $\mathbf{X}_{1} \ldots \mathbf{X}_{\mathrm{n}}$.

- The first step is just Boolean, so that the Choquet characteristic

$$
\mathbf{Q}_{\mathbf{1}}(\mathbf{K})=\exp \{-\theta[\zeta(\mathbf{K}) \cap \zeta(\mathbf{x})]\}
$$

Functional of iterated spread

Let us calculate the functionals $\mathbf{Q}_{1} \ldots \mathbf{Q}_{\mathrm{n}}$ of spreads $\mathbf{X}_{1} \ldots \mathbf{X}_{\mathrm{n}}$.

- The first step is just Boolean, so that the Choquet characteristic

$$
\mathbf{Q}_{1}(\mathbf{K})=\exp \{-\theta[\zeta(\mathbf{K}) \cap \zeta(\mathbf{x})]\}
$$

- Now, to say that K misses the $\mathrm{n}^{\text {th }}$ fire starting from x is equivalent to saying that K misses the $(\mathrm{n}-1)^{\text {th }}$ fire from y , cond. upon $\mathrm{y} \in \delta\left(\mathrm{x}_{0}\right)$. This results in the induction relation

$$
\mathbf{Q}_{\mathbf{n}}(\mathbf{K})=\exp \left[1-\int_{\zeta(\mathbf{x})} \theta(\mathbf{d y}) \mathbf{Q}_{\mathrm{n}-1}(\mathbf{K} \mid \mathbf{y})\right]
$$

Reciprocal dilation

- Reciprocal dilation: Again we meet the reciprocal dilation ζ of δ i.e. such that

$$
\mathbf{x} \cap \zeta(K) \neq \emptyset \quad \Leftrightarrow \quad \delta(\mathbf{x}) \cap \mathbf{K} \neq \emptyset .
$$

Reciprocal dilation

- Reciprocal dilation: Again we meet the reciprocal dilation ζ of δ i.e. such that

$$
x \cap \zeta(K) \neq \varnothing \quad \Leftrightarrow \quad \delta(\mathbf{x}) \cap K \neq \emptyset
$$

- Translation invariance: when $\delta(\mathbf{x})$ is the translate of a symmetrical convex set, then things are simple, as

$$
\delta(x)=\zeta(x) \quad x \in \mathbb{R}^{d}
$$

Reciprocal dilation

- Reciprocal dilation: Again we meet the reciprocal dilation ζ of δ i.e. such that

$$
x \cap \zeta(K) \neq \varnothing \quad \Leftrightarrow \quad \delta(\mathbf{x}) \cap K \neq \emptyset
$$

- Translation invariance: when $\delta(\mathbf{x})$ is the translate of a symmetrical convex set, then things are simple, as

$$
\delta(x)=\zeta(x) \quad x \in \mathbb{R}^{d} .
$$

- Variable δ But in the application to forest fires, δ varies from 1 to 5 from place to place. Which conditions must we demand to δ to get a non trivial expression for

$$
\exp \left[-\int_{\zeta(\mathbf{K})} \theta(\mathbf{d z}) \mathbf{g}(\mathbf{z})\right] ?
$$

Compact dilation

Here, the convenient class that of the compact dilations δ.

Compact dilation

Here, the convenient class that of the compact dilations δ.
Dilation δ is said to be compact when
1- the structuring function $\mathrm{x} \rightarrow \delta(\mathrm{x})$ is u.s.c. from \mathbb{R}^{d} into \mathcal{K}

Compact dilation

Here, the convenient class that of the compact dilations δ.
Dilation δ is said to be compact when
1- the structuring function $\mathrm{x} \rightarrow \delta(\mathrm{x})$ is u.s.c. from \mathbb{R}^{d} into \mathcal{K}
2- the union $U\left\{\delta_{-x}(x), x \in \mathbb{R}^{d}\right\}$ has a compact closure.
The second axiom implies that when x is far away enough, then $\delta(\mathrm{x})$ surely misses K

Compact dilation

- When δ is compact, then
$-\zeta$ also is compact,
- δ and ζ are u.s.c. mappings from \mathcal{F} to \mathcal{F} and from \mathcal{K} to \mathcal{K}

Compact dilation

- When δ is compact, then
$-\zeta$ also is compact,
$-\delta$ and ζ are u.s.c. mappings from \mathcal{F} to \mathcal{F} and from \mathcal{K} to \mathcal{K}
The following result shows that compact dilations model the geographical maps, with their discontinuites (fires that stop at a river, for example)
- Let $\delta(\mathrm{x})$ be the disc of centre x and radius $\mathrm{r}(\mathrm{x})$. When

$$
\mathbf{x} \rightarrow \mathbf{r}(\mathbf{x}) \text { is u.s.c. and } \quad \mathbf{r}(\mathbf{x})<\mathbf{r}_{\max }<\infty
$$

then both δ and ζ are compact.

Scars

- Does the random spread model fit with actual fires data?
- We can match the «scars » left by the fires union Y_{n} of all spreads X_{i} from steps 1 to n

$$
\mathbf{Y}_{\mathrm{n}}=U\left\{\mathbf{X}_{\mathrm{n}}, 1 \leq \mathrm{i} \leq \mathbf{n}\right\}
$$

- But what happens after a long time, for $Y \infty$?

Does the fire stop ? Does it expand indefinitely?

Scars

Example of a scar : A same region in 2000 and in 2004

a)

b)

Upper bounds

For finding an upper bound the scar \mathbf{Y}_{n}, introduce the parameter

$$
\mathbf{s}(\mathbf{x})=\int_{\delta(x)} \theta(\mathbf{d x})
$$

- When $\mathrm{s}(\mathbf{x})<\mathrm{s}_{\text {max }}<1$ then the scar \mathbf{Y}_{n} is upper bounded by the Boolean RACS of primary grain $\delta(\mathbf{x})$ and of intensity

$$
\theta(\mathbf{x}) / 1-\mathrm{s}_{\text {max }}
$$

Upper bounds

For finding an upper bound the scar \mathbf{Y}_{n}, introduce the parameter

$$
\mathbf{s}(\mathbf{x})=\int_{\delta(x)} \theta(\mathbf{d x})
$$

- When $\mathbf{s}(\mathbf{x}) \leq \mathbf{s}_{\text {max }}<1$ then the scar \mathbf{Y}_{n} is upper bounded by the Boolean RACS of primary grain $\delta(\mathbf{x})$ and of intensity

$$
\theta(\mathbf{x}) / 1-s_{\max }
$$

- When not, the scar can expand indefinitely.

This suggests to compare the map of $s(x)$ with the actual scares.

Scar function

The scar function is the product of our two input maps

$$
\mathbf{s}(\mathbf{x})=2 \pi \cdot \rho(\mathbf{x}) \theta(\mathbf{x})
$$

Spread radius ρ

Fuel amount θ / k

Scar function of Selangor

Hot spots

- We obtain a predictor of the scars by thresholding the scar function s above k ,
- The seasonal parameter k is estimated by the hot spots number

Results

Period 2001-2004

Conclusions

- We proposed a new random set which extend the hierarchical structure of some random points to "thick" sets.

Conclusions

- We proposed a new random set which extend the hierarchical structure of some random points to "thick" sets.
- This approach relies on the stochastic model of Random Spread, which generalizes Boolean random set.

Conclusions

- We proposed a new random set which extend the hierarchical structure of some random points to "thick" sets.
- This approach relies on the stochastic model of Random Spread, which generalizes Boolean random set.
- For forest fires, it results in correct predictions of the scars.

Conclusions

- We proposed a new random set which extend the hierarchical structure of some random points to "thick" sets.
- This approach relies on the stochastic model of Random Spread, which generalizes Boolean random set.
- For forest fires, it results in correct predictions of the scars.
- The model is currently tested on the daily spreads.

Thank you very much

for your attention!

References

- R. Blanchi, M. Jappiot, D. Alexandrian, 2002. Forest fire risk assessment and cartograph, a methodological approach. Forest Fire Research and Wildland Fire Safety, Viegas Ed. Millpress Rotterdam.
- P. Carrega, 1997. Risk components. TIGRA final report. European research project ENV4 CT 960262 . Roma, 21 p.
- W.R. Catchpole, E.A. Catchpole, A.G.Tate, B. Butler, R.C. Rommel, 2002. A model for the steady spread of fire through a homogeneous fuel bed. Forest Fire Research and Wildland Fire Safety, Viegas Ed. Millpress Rotterdam.
- Forestry Canada Fire Danger Group, 1992. Development and Structure of the Canadian Forest Fire Behaviour Prediction System, Information Report ST-X-3. Forestry Canada, Ottawa ON.
- M.D.H. Suliman, J. Serra, M.A. Awang : Morphological Random Simulations of Malaysian Forest Fires, in DMAI'2005, X. Chen Ed., AIT Bangkok, Nov. 2005.
- J.Serra, M. D. H. Suliman, and M. Mahmud Prediction and simulations of Malaysian forest fires by means of random spread, ISPR Int. Symp. Chengdu, 26-28 Sept 2007
- M. Mahmud, Forest Fire Monitoring And Mapping In South East Asia National Seminar On LUCC and GOFC (NASA/EOC), 12 Nov. 1999, Bangi Selangor Malaysia.

