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Classical maps

MALAYSIA

» Usual maps symbolize
objects that do exist in the
physical word,

* ¢.g. the Malaysian peninsula
is prior to any geographer,
and independent of him.
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Risks maps

Consider now the two maps of forest fires parameters

Fuel amount : © Fire spread : p

Relative Scale : Scale : 0 meter/mn (black)
the lighter, the more fuel to 3 meters/mn (light)

Selangor State, Malaysia
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A missing link |

 When we draw the map of a risk, e.g. a spread fire,

we describe a scientific assumption.

o There 1s no actual object in the physical word that

the map symbolizes: it represents potentialities only.

» If we want to go from potentialities to the actual

events, an additional element turns out to be necessary.

.....But how to handle it ?
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The missing link

Fire spread : p Fuel amount : ©

 How to go from these two
maps to the burnt regions?

e (Can we derive from them
the duration of a fire ?

 and the size distribution of
the burnt regions ?

* Without a model, surely
not !

Scars from 2000 to 2004
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A Pde ?

» Classically, each Pde summarizes a conflict of elementary
variations,

* but here, we are facing a space-time process whose all
parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?
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A Pde ?

» Classically, each Pde summarizes a conflict of elementary
variations,

* but here, we are facing a space-time process whose all
parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?

‘ the hot spots provide a third piece of information.
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Hot Spots I

In red, the hot
spots detected

in Selangor, on
August 12, 2005
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The spread map based Pde I

Initial hot spots
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The spread map based Pde I

The speed of
expansion is given by
the spread rate map
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The spread map based Pde I
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The spread map based Pde I
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The spread map based Pde I
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The spread map based Pde I

When the seats

expand according to
the spread map,

then they progressively
invade the whole space
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A theoretical tool I

» Indeed, such situations are the matter for a probabilistic
modelling by random sets,
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» Indeed, such situations are the matter for a probabilistic
modelling by random sets,

* The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.
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A theoretical tool I

» Indeed, such situations are the matter for a probabilistic
modelling by random sets,

* The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.

It results in predictions for the
= daily evolution of the fire;
= the possible natural extinction,
= location of the scar regions.
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A theoretical tool I

» Indeed, such situations are the matter for a probabilistic
modelling by random sets,

* The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.

It results in predictions for the
= daily evolution of the fire;
= the possible natural extinction,
= location of the scar regions.

» Finally, it also leads to simulations of the fire propagation.
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Random Closed Sets (or RACS) I

Let R? be the Euclidean space of dimension d,
F = F(RY denotes the family of all closed sets of R,

K = KR the family of all compact sets.
e o-algebra : Given an element Ke % consider the class F(K) of

all closed sets that miss the compact set K. As K spans the
family X, the classes { F(K), Ke X, } generate a c-algebra.

« RACS : Moreover, as ‘f is a compact space, one can weight ¢
by probabilities P. Then each triplet (F,c,P) defines a RACS.

This abstract definition of a RACS goes back to G.Matheron and
D.G.Kendall. However, these authors made their approach more
tractable by proving the following result.

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 22



The Matheron-Kendall theorem |

o Characteristic Theorem : Every RACS X 1s characterized by
the datum of the probabilities

Q(K) = Pr{Kc X%} Ke %.

Conversely, a family {Q(K),Kc K} defines a unique RACS if and
only if 1- Q(K) is a Choquet capacity such that

0<Q <1 and Q@)=1.

I.Serra, Paris-Fst ISMM 07 Octobre, Rio de Janeiro 23



The Matheron-Kendall theorem |

o Characteristic Theorem : Every RACS X 1s characterized by
the datum of the probabilities

Q(K) = Pr{Kc X%} Ke %.

Conversely, a family {Q(K),Kc K} defines a unique RACS if and
only if 1- Q(K) 1s a Choquet capacity such that

0<Q <1 and Q(®)=1.

o Choquet’ capacity : numerical function Q on X such that

- $(K; K )= Q(K) - QK UK
S(K; K. K)=S_,(K;K.K )-S(KUK;K,.K )

2- K JIK implies Q(K,)TQ(K)
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Poisson points

» Here are usual simulations of Poisson points
(slightly dilated by a rhomb for the display)

They are «usualy» in that the intensity &(x) is constant
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Poisson points I

A basic random set 1s that of the Poisson points, defined as
follows

« 1/ If Band B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 26



Poisson points I

A basic random set 1s that of the Poisson points, defined as
follows

« 1/ If Band B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

« 2/ If B=dx1isasmall set, then the probability of

I point indx is 0O(dx)
0 point indx is 1-06(dx)
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Poisson points I

A basic random set 1s that of the Poisson points, defined as
follows

« 1/ If Band B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

« 2/ If B=dx1isasmall set, then the probability of

I point indx is 0O(dx)
0 point indx is 1-06(dx)

The functional Q(K) of Poisson points 0 is

Q(K) = expf- | 1 6(dx) } = exp{ - B(K) }
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Regionalized Poisson points

In some cases the intensity

of the Poisson points can also
vary

through the space ...

We still have the probability
&x) dx

of one point in dx,

but £ is now an underlying
function of the space
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Regionalized Poisson points

As f1s multiplied by

a constant factor,

the number of points

Increases
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Regionalized Poisson points

And more again...

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 31



€

ionalized

oisson points

And more and more ...

I.Serra, Paris-Fst

ISMM 07 Octobre, Rio de Janeiro 32



Ints

d Poisson poi

ionalize

Reg
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Boolean random set I

variable
intensity

Ax)

variable
primary
grain

Ax)
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Boolean random set

variable
intensity

Ax)

variable
primary
grain

Ax)
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Two parameters I

Just as a Boolean random set, a random spread depends on

» The the intensity 8, non negative numerical function
* The dilation O, a set function R!— P(RY
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Two parameters I

Just as a Boolean random set, a random spread depends on
» The the intensity 8, non negative numerical function
» The dilation O, a set function R!— T(Rd)

Here we take for set O(x) the disc of radius p at point x

Point intensity 6 Dilation radius p
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Parameters maps

The two previous maps are details of the following risk maps

Fuel amount : © Fire spread : p

Relative Scale : Scale : 0 meter/mn (black)
the lighter, the more fuel to 3 meters/mn (light)

(Selangor State, Malaysia)
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Random Spread I

The idea of a random spread is the following

)
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Iterated spread I

Fire X, = &(I,.;) =3[ B]"" (I,)
Seat I, = B"(I) =U{d(x) N J;,x;el;}
Examples of iterated Spread

Point intensity

Dilation radius
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Functional of the Boolean set I

The Boolean Random set X(0, 0) is characterized by the
probabilities Q(K) that K misses the RACS , for all compact

sets K ¢ R? (Choquet characteristic). We have that

Q(K) = exp { 'f UK) 8(dx) } =exp { - O[L(K)] §
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Functional of the Boolean set I

The Boolean Random set X(0, 0) is characterized by the
probabilities Q(K) that K misses the RACS , for all compact

sets K ¢ R? (Choquet characteristic). We have that

Q(K) = exp { 'f UK) 8(dx) } =exp { - O[L(K)] §

where ( is the reciprocal of 0, i.e.

xNIK) 0 © dx)NK=£QD
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Functional of iterated spread I

Let us calculate the functionals Q... Q, of spreads X, ... X .

» The first step is just Boolean, so that the Choquet characteristic

Q,(K) = exp {- B[{(K) N ((x)] }
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Functional of iterated spread I

Let us calculate the functionals Q... Q, of spreads X, ... X .

» The first step 1s just Boolean, so that the Choquet characteristic
Q,(K) = exp { - O[{(K) N {(x)] }

« Now, to say that K misses the n'" fire starting from x is equivalent

to saying that K misses the (n-1)™ fire from y, cond. upon y € &(x,).
This results in the induction relation

Q,(K) = exp[1-] 1 8(dy) Quy(K1y)]
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Reciprocal dilation I

* Reciprocal dilation: Again we meet the reciprocal
dilation { of d1.e. such that
xN{K)#0) & dENK=£O.
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Reciprocal dilation I

* Reciprocal dilation: Again we meet the reciprocal
dilation { of d1.e. such that
xN{K)#0) & dENK=£O.

o Translation invariance: when &(x) is the translate of a
symmetrical convex set, then things are simple, as

3(x) = {(x) xeRY.
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Reciprocal dilation I

* Reciprocal dilation: Again we meet the reciprocal
dilation { of d1.e. such that
xN{K)#0) & dENK=£O.

o Translation invariance: when &(x) is the translate of a

symmetrical convex set, then things are simple, as
3(x) = {(x) xeR’.

* Variable 0 But in the application to forest fires, o varies
from 1 to 5 from place to place. Which conditions must we

demand to 0 to get a non trivial expression for
exp [ -J7x) 0(dz) g(z) | ?
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Compact dilation I

Here, the convenient class that of the compact dilations 0.
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Compact dilation I

Here, the convenient class that of the compact dilations 0.

Dilation 0 1s said to be compact when

1- the structuring function X — 9o(X) 1s u.s.c. from R’ into %
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Compact dilation I

Here, the convenient class that of the compact dilations 0.

Dilation 0 1s said to be compact when

1- the structuring function X — 9o(X) 1s u.s.c. from R’ into %

2- the union U{o (X), x € Rd} has a compact closure.

The second axiom implies that when x 1s far away enough,
then 0(x) surely misses K
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Compact dilation I

 When 0 1s compact, then
- ( also is compact,
- 0 and ( are u.s.c. mappings from Fto Fand from K to K
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Compact dilation I

 When 0 1s compact, then
- ( also is compact,
- 0 and ( are u.s.c. mappings from Fto Fand from K to K

The following result shows that compact dilations model the
geographical maps, with their discontinuites (fires that stop at
a river, for example)

* Let o(x) be the disc of centre x and radius r(x). When

X —r(x) sus.c. and r(x)<rp,, <o

then both 6 and { are compact.
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Scars I

* Does the random spread model fit with actual fires
data ?

* We can match the « scars » left by the fires union
Y, of all spreads X. from steps 1 ton

Y, =U{X,,1<i<n}
» But what happens after a long time, for Yoo?

Does the fire stop ? Does it expand indefinitely?
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Scars

Example of a scar : A same region in 2000 and in 2004
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Upper bounds I

For finding an upper bound the scar Y , introduce the parameter

s(x) = J 50 B(dx)

 When s(x) <s
the Boolean RACS of primary grain &(x) and of intensity

e(X) /1 - Smax

<1 then the scar Y, 1s upper bounded by

max

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 55



Upper bounds I

For finding an upper bound the scar Y , introduce the parameter

s(x) = J 50 B(dx)

e Whens(x)< s
the Boolean RACS of primary grain &(x) and of intensity

0(x)/1-s,,,

« When not, the scar can expand indefinitely.

<1 then the scar Y, 1s upper bounded by

max

This suggests to compare the map of s(x) with the actual
scares.
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Scar function

The scar function is the product

of our two input maps

s(x) = 21. P(x) O(x)

Spread radius p  Fuel amount 6/k Scar function of Selangor

I.Serra, Paris-Fst ISMM 07 Octobre, Rio de Janeiro 57



Hot spots I

« We obtain a predictor of the scars by thresholding
the scar function s above k,

* The seasonal parameter k is estimated by the hot spots number

(ﬂ\%ﬂ% ™
\M\\/A 3' %‘*bq h\x\wf - —\
\ J
\,‘LR\ » é
) Y
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Results |

"’3
(5

x‘q__‘

Scars Scars
From model prediction from satellite detection

Period 2001-2004

§ o S
i %? -
»J o
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Conclusions I

 We proposed a new random set which extend the hierarchical

structure of some random points to “thick™ sets.
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Conclusions I
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» This approach relies on the stochastic model of Random

Spread , which generalizes Boolean random set.
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Conclusions I

 We proposed a new random set which extend the hierarchical

structure of some random points to “thick™ sets.

» This approach relies on the stochastic model of Random

Spread , which generalizes Boolean random set.

» For forest fires, it results in correct predictions of the scars.
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Conclusions I

We proposed a new random set which extend the hierarchical

structure of some random points to “thick™ sets.

This approach relies on the stochastic model of Random

Spread , which generalizes Boolean random set.

For forest fires, it results in correct predictions of the scars.

The model 1s currently tested on the daily spreads.
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Thank you very much

for your attention !
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