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• Usual maps symbolize 
objects that do exist in the 
physical word, 

• e.g. the Malaysian peninsula 
is prior to any geographer, 
and independent of him.

Classical mapsClassical maps
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Selangor State, Malaysia
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Consider now the two maps of forest fires parameters
Fuel amount : θθθθ                                                                                    Fire spread : ρρρρ

Risks mapsRisks maps
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A missing linkA missing link
• When we draw the map of a risk, e.g. a spread fire,
we describe a scientific assumption. 
• There is no actual object in the physical word that
the map symbolizes: it represents potentialities only. 
• If we want to go from potentialities to the actual
events, an additional element turns out to be necessary. 

…..But how to handle it ?
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• How to go from these two 
maps to the burnt regions?

• Can we derive from them 
the duration of a fire ?

• and  the size distribution of 
the burnt regions ?

• Without a model, surely 
not !

The missing linkThe missing link
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• How to go from these two 
maps to the burnt regions?

• Can we derive from them 
the duration of a fire ?

• and  the size distribution of 
the burnt regions ?

• Without a model, surely 
not !

The missing linkThe missing link
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• Classically, each Pde summarizes a conflict of elementary
variations,
• but here, we are facing a space-time process whose all 

parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?

A  Pde ?A  Pde ?
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A  Pde ?A  Pde ?

• Classically, each Pde summarizes a conflict of elementary
variations,
• but here, we are facing a space-time process whose all 

parameters act in the sense of the space invasion.

How to introduce an element that balance the invasion?

the hot spots provide a third piece of information.
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Hot SpotsHot Spots

In red, the hot 
spots detected 
in Selangor, on 
August 12, 2005 
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Initial hot spots 

The spread map based PdeThe spread map based Pde
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The speed of
expansion is given by
the spread rate map

The spread map based PdeThe spread map based Pde
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The spread map based PdeThe spread map based Pde
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The spread map based PdeThe spread map based Pde
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The spread map based PdeThe spread map based Pde
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When the seats 
expand according to 
the spread map, 
then they progressively 
invade the whole space

The spread map based PdeThe spread map based Pde
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• Indeed, such situations are the matter for a probabilistic 
modelling by random sets,

A theoretical toolA theoretical tool
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• Indeed, such situations are the matter for a probabilistic 
modelling by random sets,
• The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.

A theoretical toolA theoretical tool
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• Indeed, such situations are the matter for a probabilistic 
modelling by random sets,
• The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.
• It results in predictions for the

⇒ daily evolution of the fire; 
⇒ the possible natural extinction, 
⇒ location of the scar regions.

A theoretical toolA theoretical tool
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• Indeed, such situations are the matter for a probabilistic 
modelling by random sets,
• The random spread model allows us to complete the
missing link, by mixing Poisson points and dilation.
• It results in predictions for the

⇒ daily evolution of the fire; 
⇒ the possible natural extinction, 
⇒ location of the scar regions.

• Finally, it also leads to simulations of the fire propagation.

A theoretical toolA theoretical tool
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Random Closed Sets (or RACS)Random Closed Sets (or RACS)
Let R � be the Euclidean space of dimension d, 

F = F (R �) denotes the family of all closed sets of  R �, 
K = K (R �) the family of all compact sets. 

• σ-algebra : Given an element K∈K, consider the class F(K) of 
all closed sets that miss the compact set K. As K spans the 
family K , the classes {F(K), K∈K, } generate a σ-algebra.

• RACS : Moreover, as F is a compact space, one can weight σ 
by probabilities P. Then each triplet (F,σ,P) defines a RACS. 

This abstract definition of a RACS goes back to G.Matheron and
D.G.Kendall. However, these authors made their approach more
tractable by proving the following result.
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The Matheron-Kendall theoremThe Matheron-Kendall theorem

• Characteristic Theorem : Every RACS X is characterized by 
the datum of the probabilities

Q(K)  =  Pr { K ⊆ X � }            K ∈ KKKK, .
Conversely, a family {Q(K),K⊆K} defines a unique RACS if and
only if 1- Q(K) is a Choquet capacity such that 

0 ≤ Q  ≤ 1    and    Q(∅) = 1. 
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The Matheron-Kendall theoremThe Matheron-Kendall theorem
• Characteristic Theorem : Every RACS X is characterized by 

the datum of the probabilities
Q(K)  =  Pr { K ⊆ X � }            K ∈ KKKK, .

Conversely, a family {Q(K),K⊆K} defines a unique RACS if and
only if 1- Q(K) is a Choquet capacity such that 

0 ≤ Q  ≤ 1    and    Q(∅) = 1. 
• Choquet’ capacity : numerical function Q on K, such that

1- S �(K; K � ) = Q(K) - Q(K ∩ K �) 
S� (K; K � ..K� ) = S�

�

�(K; K � ..K�
�

�) - S� (K ∩ K� ; K � ..K�
�

�) 
2- K� ↓K    implies     Q(K� )↑Q(K) 
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• Here are usual simulations of Poisson points
(slightly dilated by a rhomb for the display)

They are «usual» in that the intensity θθθθ(x) is constant

Poisson pointsPoisson points
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A basic random set is that of the Poisson points, defined as 
follows

• 1/  If  B and  B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

Poisson pointsPoisson points
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A basic random set is that of the Poisson points, defined as 
follows

• 1/  If  B and  B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

• 2/  If  B = dx is a small set, then the probability of
1 point   in dx    is    θθθθ(dx)
0 point in dx    is    1- θθθθ(dx)

Poisson pointsPoisson points
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A basic random set is that of the Poisson points, defined as 
follows

• 1/  If  B and  B’ are disjoints, then the numbers of
points in B and B’ are independent variables;

• 2/  If  B = dx is a small set, then the probability of
1 point   in dx    is    θθθθ(dx)
0 point in dx    is    1- θθθθ(dx)

The functional Q(K) of Poisson points θ is 
Q(K) = exp{-∫ � θθθθ(dx) } = exp{ - θθθθ(K) } 

Poisson pointsPoisson points
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Regionalized Poisson pointsRegionalized Poisson points
In some cases the intensity
of the Poisson points can also  

vary 
through the space …

We still have the probability
θθθθ(x) dx

of one point in dx,

but θθθθ    is now an underlying 
function of the space
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Regionalized Poisson pointsRegionalized Poisson points

As θθθθ is multiplied by 
a constant factor,

the number of points
increases
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Regionalized Poisson pointsRegionalized Poisson points

And more again…
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Regionalized Poisson pointsRegionalized Poisson points

And more and more …
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Regionalized Poisson pointsRegionalized Poisson points
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variable
intensity
 θθθθ(x)

variable
primary
grain 

δδδδ(x)

Boolean random setBoolean random set
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variable
intensity
 θθθθ(x)

variable
primary
grain 

δδδδ(x)

Boolean random setBoolean random set
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Two parametersTwo parameters
Just as a Boolean random set ,  a random spread depends on 
• The the intensity θθθθ    ,,,,    non negative numerical function
• The dilation δδδδ ,,,,        a set function R

�

t P (R

�

)
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Two parametersTwo parameters

Just as a Boolean random set ,  a random spread depends on 
• The the intensity θθθθ    ,,,,    non negative numerical function
• The dilation δδδδ ,,,,        a set function R

�

t P (R

�

)
Here we take for set δ(x) the disc of radius ρ at point x

Point intensity θθθθ Dilation radius ρρρρ
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The two previous maps are details of the following risk maps
Fuel amount : θθθθ                                                                                    Fire spread : ρρρρ

Parameters mapsParameters maps
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Random Spread Random Spread 
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The idea of a random spread is the following

� 
 �
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Iterated spread Iterated spread 

Examples of  iterated Spread

Fire  X � = δδδδ(I ��� � ) = δδδδÎ[ ββββ]]]]

�� �

((((I �))))    
Seat I � = ββββ

�

((((I �))))    = «{ δδδδ(x �)» J � , x � Œ I � }
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Functional of the Boolean setFunctional of the Boolean set

The Boolean Random set X(θ, δ) is characterized by the
probabilities Q(K) that K misses the RACS , for all compact
sets K Õ R

� (Choquet characteristic). We have that
Q(K) =  exp { -∫ζζζζ

� � � θθθθ(dx) } = exp { - θθθθ[[[[ζζζζ(K)] }
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Functional of the Boolean setFunctional of the Boolean set

The Boolean Random set X(θ, δ) is characterized by the
probabilities Q(K) that K misses the RACS , for all compact
sets K Õ R

� (Choquet characteristic). We have that
Q(K) =  exp { -∫ζζζζ

� � � θθθθ(dx) } = exp { - θθθθ[[[[ζζζζ(K)] }

where ζζζζ is the reciprocal of δδδδ, i.e. 
x » ζζζζ(K) π ∆ ¤      δδδδ(x) » K π ∆
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Let us calculate the functionals Q �… Q � of spreads  X � … X � .

• The first step is just Boolean, so that the Choquet characteristic
Q � (K) =  exp { - θθθθ[[[[ζζζζ(K) » ζζζζ(x)] }

Functional of iterated spread Functional of iterated spread 
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Let us calculate the functionals Q �… Q � of spreads  X � … X � .

• The first step is just Boolean, so that the Choquet characteristic
Q � (K) =  exp { - θθθθ[[[[ζζζζ(K) » ζζζζ(x)] }

• Now, to say that K misses the n � � fire starting from x is equivalent
to saying that K misses the (n-1) � � fire from y, cond. upon y œ δ(x �).
This results in the induction relation 

Q � (K) =  exp [[[[ 1 -∫ζζζζ

��� � θθθθ(dy) Q �� � (K 6 y) ] 

Functional of iterated spread Functional of iterated spread 



��� ��� � ��	� 
� � ��
 �� � � � � ��� ��� �� � � �� � � � �� ��� � � � � � �

Reciprocal dilation  Reciprocal dilation  
• Reciprocal dilation: Again we meet the reciprocal
dilation ζζζζ of  δδδδ i.e. such that

x » ζζζζ(K) π ∆ ¤      δδδδ(x) » K π ∆ .
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Reciprocal dilation  Reciprocal dilation  
• Reciprocal dilation: Again we meet the reciprocal
dilation ζζζζ of  δδδδ i.e. such that

x » ζζζζ(K) π ∆ ¤      δδδδ(x) » K π ∆ .
• Translation invariance: when δδδδ(x) is the translate of a 
symmetrical convex set, then things are simple, as 
 δδδδ(x) = ζζζζ(x)            xŒR

�

.
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Reciprocal dilation  Reciprocal dilation  

• Reciprocal dilation: Again we meet the reciprocal
dilation ζζζζ of  δδδδ i.e. such that

x » ζζζζ(K) π ∆ ¤      δδδδ(x) » K π ∆ .
• Translation invariance: when δδδδ(x) is the translate of a 
symmetrical convex set, then things are simple, as 
 δδδδ(x) = ζζζζ(x)            xŒR

�

.
• Variable δδδδ But in the application to forest fires, δδδδ varies
from 1 to 5 from place to place. Which conditions must we
demand to δδδδ to get a non trivial expression for  

exp [ -∫ζζζζ

� � � θθθθ(dz) g(z) ] ?
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Compact dilationCompact dilation
Here, the convenient class that of the compact dilations δ. 
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Compact dilationCompact dilation
Here, the convenient class that of the compact dilations δ. 

Dilation δ is said to be compact when

1- the structuring function x t δ(x) is u.s.c. from R

�

into K,
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Compact dilationCompact dilation

Here, the convenient class that of the compact dilations δ. 

Dilation δ is said to be compact when

1- the structuring function x t δ(x) is u.s.c. from R

�

into K,
2- the union «{δ � � (x), x ŒR

�

} has a compact closure.
The second axiom implies that when x is far away enough,  

then δ(x) surely misses K 
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• When δ is compact, then 
- ζ also is compact,
- δ and ζ are u.s.c. mappings from F to F and from K to K

Compact dilationCompact dilation
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• When δ is compact, then 
- ζ also is compact,
- δ and ζ are u.s.c. mappings from F to F and from K to K

The following result shows that compact dilations model the
geographical maps, with their discontinuites (fires that stop at
a river, for example)
• Let δ(x) be the disc of centre x and radius r(x). When 

x t r(x)  is u.s.c. and      r(x) < r �� � < ∞
then both δ and ζ are compact.

Compact dilationCompact dilation
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• Does the random spread model fit with actual fires 
data ?

• We can match the « scars » left by the fires union 
Y � of all spreads X � from steps  1 to n

Y � = ∩ {X � , 1≤ i ≤ n }
• But what happens after a long time, for Y∞?
Does the fire stop ? Does it expand indefinitely?

ScarsScars
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ScarsScars
Example of a scar : A same region in 2000 and in 2004
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For finding an upper bound the scar Y � , introduce the parameter
s(x) = ∫δδδδ

��� � θθθθ(dx)
• When s(x) < s �� � < 1 then the scar  Y � is upper bounded by
the Boolean RACS of primary grain δδδδ(x) and of intensity

θθθθ (x) / 1 - s �� �

Upper boundsUpper bounds
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For finding an upper bound the scar Y � , introduce the parameter
s(x) = ∫δδδδ

��� � θθθθ(dx)
• When s(x) ≤≤≤≤ s �� � < 1 then the scar  Y � is upper bounded by
the Boolean RACS of primary grain δδδδ(x) and of intensity

θθθθ (x) / 1 - s �� �

• When not, the scar can expand indefinitely.
This suggests to compare the map of s(x) with the actual 
scares.

Upper boundsUpper bounds
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The scar function is the product
of our two input maps

s(x) = 2222ππππ    ....    ρρρρ(x) θθθθ(x)

Scar functionScar function

��� �� ��� �� � 	�
 � 
 � ��� � � �
 
 �� � � � �� 
 � � � θθθθ    ////    

���� � � � � � � � 	 �� ρρρρ
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Hot spotsHot spots
• We obtain a predictor of the scars by thresholding
the scar function s above k, 
• The seasonal parameter k is estimated by the hot spots number
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ResultsResults
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• We proposed a new random set which extend the hierarchical
structure of some random points to “thick” sets.

ConclusionsConclusions
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• We proposed a new random set which extend the hierarchical
structure of some random points to “thick” sets.

• This approach relies on the stochastic model of Random
Spread , which generalizes Boolean random set.

ConclusionsConclusions
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• We proposed a new random set which extend the hierarchical
structure of some random points to “thick” sets.

• This approach relies on the stochastic model of Random
Spread , which generalizes Boolean random set.

• For forest fires, it results in correct predictions of the scars.

ConclusionsConclusions
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• We proposed a new random set which extend the hierarchical
structure of some random points to “thick” sets.

• This approach relies on the stochastic model of Random
Spread , which generalizes Boolean random set.

• For forest fires, it results in correct predictions of the scars.

• The model is currently tested on the daily spreads.

ConclusionsConclusions
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Thank you very much 

for your attention !
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